Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.31.21254634

ABSTRACT

Rapid testing methods can identify outbreaks and trigger preventive strategies for slowing the spread of SARS-CoV-2, the virus that causes COVID-19. The gold-standard detection method for SARS-CoV-2 is reverse transcription quantitative polymerase chain reaction (RT-qPCR) performed on samples collected using a nasopharyngeal (NP) swab. While NP RT-qPCR provides high sensitivity, it requires trained personnel to administer and suffers from lengthy time-to-result. Recently, the testing community has turned to rapid saliva-based screening methods including saliva-to-RT-qPCR and/or saliva-to-RT-LAMP (reverse transcription loop-mediated isothermal amplification) to identify infected individuals regardless of symptomatic presentation. Here, we report a simple and rapid RT-LAMP fluorometric assay performed directly on heat-inactivated saliva, without the addition of buffers or proteinase K treatments we call saliva LAMP (SLAMP). Over the course of two days, a total of 243 individuals were tested using NP RT-qPCR, saliva-based qPCR, and saliva-based RT-LAMP. Of the 243 NP RT-qPCR tests, 65 were positive, 178 were negative, and SLAMP demonstrated a 91% sensitivity and 98% specificity. SLAMP sensitivity becomes 95% when samples negative in saliva tests while positive in NP RT-qPCR are excluded from evaluation, potentially indicating significant differences in viral titer between collection sites on the body. SLAMP is performed in triplicates and takes 45 min to run in the laboratory, requiring less technician time and instrument run time than NP RT-qPCR. These results demonstrate that saliva-based RT-LAMP can enable frequent and rapid screening of large numbers of people to identify pre-symptomatic and asymptomatic individuals thereby controlling outbreaks.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.04.21252949

ABSTRACT

SARS-CoV-2 spreads quickly in dense populations, with serious implications for universities, workplaces, and other settings where exposure reduction practices are difficult to implement. Rapid screening has been proposed as a tool to slow the spread of the virus; however, many commonly used diagnostic tests (e.g., RT-qPCR) are expensive, difficult to deploy (e.g., require a nasopharyngeal specimen), and have extended turn-around times. We evaluated testing regimes that combined diagnostic testing using qPCR with high-frequency screening using a novel reverse-transcription loop-mediated isothermal amplification (RT-LAMP, herein LAMP) assay. We used a compartmental susceptible-exposed-infectious-recovered (SEIR) model to simulate screening of a university population. We also developed a Shiny application to allow administrators and public health professionals to develop optimal testing strategies given site-specific assumptions about testing investment, target population, and cost. The frequency of screening, especially when pooling samples, was more important for minimizing epidemic size than test sensitivity, behavioral compliance, contact tracing capacity, and time between testing and results. Our results suggest that when testing budgets are limited, it is safer and more cost-effective to allocate the majority of funds to screening. Rapid, cost-effective, and scalable screening tests, like LAMP, should be viewed as critical components of SARS-CoV-2 testing in high-density populations.

3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.14.383026

ABSTRACT

The risk posed by Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2) dictates that live-virus research is conducted in a biosafety level 3 (BSL3) facility. Working with SARS-CoV-2 at lower biosafety levels can expedite research yet requires the virus to be fully inactivated. In this study, we validated and compared two protocols for inactivating SARS-CoV-2: heat treatment and ultraviolet irradiation. The two methods were optimized to render the virus completely incapable of infection while limiting destructive effects of inactivation. We observed that 15 minutes of incubation at 65{degrees}C completely inactivates high titer viral stocks. Complete inactivation was also achieved with minimal amounts of UV power (70,000 J/cm2), which is 100-fold less power than comparable studies. Once validated, the two methods were then compared for viral RNA quantification, virion purification, and antibody recognition. We observed that UV irradiation resulted in a 2-log reduction of detectable genomes compared to heat inactivation. Protein yield following virion enrichment was equivalent for all inactivation conditions, but the resulting viral proteins and virions were negatively impacted by inactivation method and time. We outline the strengths and weaknesses of each method so that investigators might choose the one which best meets their research goals.


Subject(s)
Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL